101 research outputs found

    Multi-criteria Resource Allocation in Modal Hard Real-Time Systems

    Get PDF
    In this paper, a novel resource allocation approach dedicated to hard real-time systems with distinctive operational modes is proposed. The aim of this approach is to reduce the energy dissipation of the computing cores by either powering them off or switching them into energy-saving states while still guaranteeing to meet all timing constraints. The approach is illustrated with two industrial applications, an engine control management and an engine control unit. Moreover, the amount of data to be migrated during the mode change is minimised. Since the number of processing cores and their energy dissipation are often negatively correlated with the amount of data to be migrated during the mode change, there is some trade-off between these values, which is also analysed in this paper

    Semantics-based information extraction for detecting economic events

    Get PDF
    As today's financial markets are sensitive to breaking news on economic events, accurate and timely automatic identification of events in news items is crucial. Unstructured news items originating from many heterogeneous sources have to be mined in order to extract knowledge useful for guiding decision making processes. Hence, we propose the Semantics-Based Pipeline for Economic Event Detection (SPEED), focusing on extracting financial events from news articles and annotating these with meta-data at a speed that enables real-time use. In our implementation, we use some components of an existing framework as well as new components, e.g., a high-performance Ontology Gazetteer, a Word Group Look-Up component, a Word Sense Disambiguator, and components for detecting economic events. Through their interaction with a domain-specific ontology, our novel, semantically enabled components constitute a feedback loop which fosters future reuse of acquired knowledge in the event detection process

    HAMSTER: visualizing microarray experiments as a set of minimum spanning trees

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Visualization tools allow researchers to obtain a global view of the interrelationships between the probes or experiments of a gene expression (<it>e.g. microarray</it>) data set. Some existing methods include hierarchical clustering and k-means. In recent years, others have proposed applying minimum spanning trees (MST) for microarray clustering. Although MST-based clustering is formally equivalent to the dendrograms produced by hierarchical clustering under certain conditions; visually they can be quite different.</p> <p>Methods</p> <p>HAMSTER (Helpful Abstraction using Minimum Spanning Trees for Expression Relations) is an open source system for generating a <b>set </b>of MSTs from the experiments of a microarray data set. While previous works have generated a single MST from a data set for data clustering, we recursively merge experiments and repeat this process to obtain a set of MSTs for data visualization. Depending on the parameters chosen, each tree is analogous to a snapshot of one step of the hierarchical clustering process. We scored and ranked these trees using one of three proposed schemes. HAMSTER is implemented in C++ and makes use of Graphviz for laying out each MST.</p> <p>Results</p> <p>We report on the running time of HAMSTER and demonstrate using data sets from the NCBI Gene Expression Omnibus (GEO) that the images created by HAMSTER offer insights that differ from the dendrograms of hierarchical clustering. In addition to the C++ program which is available as open source, we also provided a web-based version (HAMSTER<sup>+</sup>) which allows users to apply our system through a web browser without any computer programming knowledge.</p> <p>Conclusion</p> <p>Researchers may find it helpful to include HAMSTER in their microarray analysis workflow as it can offer insights that differ from hierarchical clustering. We believe that HAMSTER would be useful for certain types of gradient data sets (e.g time-series data) and data that indicate relationships between cells/tissues. Both the source and the web server variant of HAMSTER are available from <url>http://hamster.cbrc.jp/</url>.</p

    4D Match Trees for Non-rigid Surface Alignment

    Get PDF
    This paper presents a method for dense 4D temporal alignment of partial reconstructions of non-rigid surfaces observed from single or multiple moving cameras of complex scenes. 4D Match Trees are introduced for robust global alignment of non-rigid shape based on the similarity between images across sequences and views. Wide-timeframe sparse correspondence between arbitrary pairs of images is established using a segmentation-based feature detector (SFD) which is demonstrated to give improved matching of non-rigid shape. Sparse SFD correspondence allows the similarity between any pair of image frames to be estimated for moving cameras and multiple views. This enables the 4D Match Tree to be constructed which minimises the observed change in non-rigid shape for global alignment across all images. Dense 4D temporal correspondence across all frames is then estimated by traversing the 4D Match tree using optical flow initialised from the sparse feature matches. The approach is evaluated on single and multiple view images sequences for alignment of partial surface reconstructions of dynamic objects in complex indoor and outdoor scenes to obtain a temporally consistent 4D representation. Comparison to previous 2D and 3D scene flow demonstrates that 4D Match Trees achieve reduced errors due to drift and improved robustness to large non-rigid deformations

    Wikipedia Information Flow Analysis Reveals the Scale-Free Architecture of the Semantic Space

    Get PDF
    In this paper we extract the topology of the semantic space in its encyclopedic acception, measuring the semantic flow between the different entries of the largest modern encyclopedia, Wikipedia, and thus creating a directed complex network of semantic flows. Notably at the percolation threshold the semantic space is characterised by scale-free behaviour at different levels of complexity and this relates the semantic space to a wide range of biological, social and linguistics phenomena. In particular we find that the cluster size distribution, representing the size of different semantic areas, is scale-free. Moreover the topology of the resulting semantic space is scale-free in the connectivity distribution and displays small-world properties. However its statistical properties do not allow a classical interpretation via a generative model based on a simple multiplicative process. After giving a detailed description and interpretation of the topological properties of the semantic space, we introduce a stochastic model of content-based network, based on a copy and mutation algorithm and on the Heaps' law, that is able to capture the main statistical properties of the analysed semantic space, including the Zipf's law for the word frequency distribution

    A Differentiation-Based Phylogeny of Cancer Subtypes

    Get PDF
    Histopathological classification of human tumors relies in part on the degree of differentiation of the tumor sample. To date, there is no objective systematic method to categorize tumor subtypes by maturation. In this paper, we introduce a novel computational algorithm to rank tumor subtypes according to the dissimilarity of their gene expression from that of stem cells and fully differentiated tissue, and thereby construct a phylogenetic tree of cancer. We validate our methodology with expression data of leukemia, breast cancer and liposarcoma subtypes and then apply it to a broader group of sarcomas. This ranking of tumor subtypes resulting from the application of our methodology allows the identification of genes correlated with differentiation and may help to identify novel therapeutic targets. Our algorithm represents the first phylogeny-based tool to analyze the differentiation status of human tumors

    Linking like with like: optimising connectivity between environmentally-similar habitats

    Get PDF
    Habitat fragmentation is one of the greatest threats to biodiversity. To minimise the effect of fragmentation on biodiversity, connectivity between otherwise isolated habitats should be promoted. However, the identification of linkages favouring connectivity is not trivial. Firstly, they compete with other land uses, so they need to be cost-efficient. Secondly, linkages for one species might be barriers for others, so they should effectively account for distinct mobility requirements. Thirdly, detailed information on the auto-ecology of most of the species is lacking, so linkages need being defined based on surrogates. In order to address these challenges we develop a framework that (a) identifies environmentally-similar habitats; (b) identifies environmental barriers (i.e., regions with a very distinct environment from the areas to be linked), and; (c) determines cost-efficient linkages between environmentally-similar habitats, free from environmental barriers. The assumption is that species with similar ecological requirements occupy the same environments, so environmental similarity provides a rationale for the identification of the areas that need to be linked. A variant of the classical minimum Steiner tree problem in graphs is used to address c). We present a heuristic for this problem that is capable of handling large datasets. To illustrate the framework we identify linkages between environmentally-similar protected areas in the Iberian Peninsula. The Natura 2000 network is used as a positive ‘attractor’ of links while the human footprint is used as ‘repellent’ of links.Wecompare the outcomes of our approach with cost-efficient networks linking protected areas that disregard the effect of environmental barriers. As expected, the latter achieved a smaller area covered with linkages, but with barriers that can significantly reduce the permeability of the landscape for the dispersal of some species
    corecore